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Supplementary Figure 1. Hypothesized Plasmodium falciparum targets. a, Gene 
expression profiles of hypothesized P. falciparum targets in Table 1.  Heat maps were 
generated for the mRNA expression of hypothesized target genes listed in Table 1 
during 48 hr intra-erythrocyte infection16 (left) and over various life stages15 
(right),using data from published studies and PlasmoDB32    Non-intra-erythrocyte life 
stages have red labels. White or empty cells indicate missing data.  No gene expression 
data were available for two putative targets, MAL1P3.03a (18S rRNA) and PlfaoMp3 
(mitochondrial cytochrome b).  b, Phylogenetic tree of combined human and P. 
falciparum kinomes.  P. falciparum kinases and branches are red while human 
counterparts are black.  Major human kinase subfamilies labelled are tyrosine kinases 
(TK): tyrosine-like kinases (TKL); homologs of yeast sterile 7, 11 and 20 kinases 
(STE); casein kinase 1 (CK1); PKA, PKG, PKC kinases (AGC); calcium/calmodulin 
kinases (CAMK); and CDK, MAPK, GSK3, CLK kinases (CMGC).  Malarial kinases 
that are hypothesized targets in Table 1 are marked with a red dot.  Neighbor-joining 
tree based on pairwise amino acid sequence similarity for all known human19 and P. 
falciparum21,32 kinase domains.  Nodes supported by ≥ 60% of  1000 bootstrap 
replicates are indicated by “*” (see Methods for tree reconstruction).
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Outline

1. Overview of drug research and development

2. Integrative biomedical databases 

3. Human centric data (genetics, clinical trials, drug and tool compounds)

4. Multi-omics evidence databases 

5. Protein characterization and interactions databases

6. Comparative genomics and model organism databases

7. Cancer relevant databases

8. Concluding remarks & discussion 
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Key Stages and Timelines in Drug Development
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• Estimated R&D 
costs per drug 
range from 
$133M to 
$6B.*  

• Clinical phases 
are the most 
costly stages

• Need to “fail 
early” and ”fail 
fast”

* Rennane et al. 2022. Inquiry. 58: 004695802. https://journals.sagepub.com/doi/10.1177/00469580211059731 

Roses. 2008. Nature Rev Drug Disc. 7:807. https://www.nature.com/articles/nrd2593 

https://journals.sagepub.com/doi/10.1177/00469580211059731
https://www.nature.com/articles/nrd2593


Challenges of Drug Discovery and Development

• From 2017-2022, among 10 major 
therapy areas the top two as measured 
by proportion of clinical trials are 
oncology (24 %) and infectious disease 
(12 %).

• Oncology drugs also have the lowest 
clinical trial success rate (3.4%).

• Vaccines for infectious diseases have 
the highest clinical trial success rate 
(33.4%).

• Main reasons for drug failures:
1. Efficacy*
2. Safety*
3. Commercial / financial

• * Can be partially addressed by 
computational approaches

510 Trends and Statistics for Clinical Trials in 2023: https://xtalks.com/10-trends-and-statistics-for-clinical-trials-in-2023-3377/ 

https://doi.org/10.1093/biostatistics/kxx069

https://xtalks.com/10-trends-and-statistics-for-clinical-trials-in-2023-3377/
https://doi.org/10.1093/biostatistics/kxx069


1. 

Key Features of a “Good” Drug Target
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Feature Considerations

Addresses An 
Unmet Medical 
Need

• Target has a causal role in the disease
• Target is expressed in disease tissue
• Linked to human disease epidemiology and any potential sub-type cohorts are known

Efficacy • Modulating the target has the potential to change the disease phenotype through a known 
mechanism of action (MOA)

• Target linked to disease related pathways 
• Human genetic phenotypes exist that might inform about target-disease associations
• Understanding potential target redundancies and other drug-resistance mechanisms
• Having informative pre-clinical in vitro, ex vivo and in vivo models for clinical translation

Druggability • Target gene, transcript or protein can be modulated in the desired direction and intensity
• Known drug modalities for modulating the target (i.e., small molecule, mAb, vaccine, siRNA, protein 

degradation, cell-gene therapy, CRISPR, etc.)
• For any particular modality, the target is accessible and therapeutic dosing is tolerable and efficacious  

Safety • Assessments of potential off-target effects of the drug
• Existence of suitable pre-clinical models for toxicity testing
• An understanding of potential genetic factors that could impact drug tolerance and safety



Sources of Novel Therapeutic Targets: Finding the Best Candidate
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Target(s)

Prioritization

Candidate Targets

Cellular Screens
Pro-pathogenAnti-pathogen

Experimental Validation

Compound Screens

of the selected assay. Several analogues of 4-aminoquinolines (for
example, chloroquine), 8-aminoquinolines (for example, prima-
quine), methanol-quinolines (for example, quinine), diaminopyrimi-
dines (for example, pyrimethamine), diaminotriazines (for example,
cycloguanil) and naphthoquinones (for example, atovaquone) are all
present in the hit collection. They do not represent more than 10% of
all the hits by our similarity criteria. Endoperoxides (for example,
artemisinin) were not identified, as they are not present in the screen-
ing library.

In addition to screening the reference laboratory strain 3D7, TCAMS
was subsequently screened against themultidrug resistantDd2 strain at
the sameconcentrationused in theprimary screen (2mM).This strain is
insensitive to several quinolines and antifolates. Results showed
approximately 8,000 compounds (,60%) inhibited Dd2 growth by
more than 50% (Supplementary Table 1). Compounds potent against
3D7 (XC50 lower than 200 nM), but less active against Dd2 (growth
inhibition less than 50% at 2mM), are predominantly quinolines or
structures related to antifolates, as expected. But Dd2 has also been
shown to be less sensitive to unrelated chemotypes10, probably due to
amplification and mutation of the efflux pump gene pfmdr1 (ref. 11).
Specific characterization of individual hits is required before more
detailed conclusions can be drawn, but it is encouraging thatmore than
half of our hits retainpotent activity against amultidrug resistant strain.

Structural characterization of hits

We used two methods to structurally characterize TCAMS and
estimate the number of different chemotypes present. The hits can
be described by 416 molecular frameworks12 or by fingerprint clus-
ters. Here, we use the Daylight fingerprint methods with a Tanimoto
similarity index of 0.85 (ref. 13) which yields 857 clusters and 1,978
‘singletons’ (three or fewer similar compounds) (Supplementary
Table 1). These fingerprint cluster annotations can be used to sepa-
rate distinct classes from within the broader molecular framework
categories. This is because the molecular frameworks describe the
core template of compounds well (and therefore provide a robust,
consistent categorization of compounds) whereas the fingerprint
methods will often capture subtle substituent patterns but miss the
commonalities in the core; together the two methods allow an
ordered navigation through the chemical structure space represented
by TCAMS and exemplified graphically in Fig. 1. In the absence of
specific target information, such chemical structure clustering pro-
vides a framework to enable a systematic exploration of the mode of
action for the compounds. The assumption being that compounds in
the same cluster share mode of action (similarity principle14). This
may not always be true but it is the best starting hypothesis in
the absence of additional information. Therefore, taking just a few
exemplars from each cluster can reduce the work required to identify

75

175

150

125

100

50

6

6

150

160

170

180

6.5

6.5
7

7

7.5

7.5

8
8

8.5
8.5

190180170160150255075100125150175200225

25

N

N

O
N

N

O
N

O

N

F
F

F

N

O

O O

O N
O

N
Cl Cl

N
N

N

N
NN

S O

Cl

O

N

N S
O

O

Cl

O
S

N O

N
N

N
O

N
Cl

F

N
N

Cl

S O
N

N

N
NNO

N

S

O

N

F

S
O

O N

N

O

N
N

N

N

NO

F

O

F

O

NN
N

S

N

Cl
ON

N
N

O

N
N

O

N
SO

O N

N

Cl

NN N
O

N

Cl

N

N
O

pXC50

Framework
number

Cluster
number

Figure 1 | Three-dimensional plot of some of the novel chemical diversity
present in TCAMS. Compounds are represented by coloured spheres
plotted against their assigned molecular framework number, chemical
fingerprint cluster number and estimated antiplasmodial potency

(pXC5052logXC50, where XC50 is in molar units and pXC50 is
dimensionless; XC505 1mMcorresponds to pXC505 6). Inserted structures
are examples of drug-like molecules not previously described to possess
antiplasmodial activity.

ARTICLES NATURE |Vol 465 |20 May 2010

306
Macmillan Publishers Limited. All rights reserved©2010
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Target Evidence: Multiple Approaches 

• Importance of in silico approaches for prioritizing therapeutic targets
• De-risking and prioritization before devoting time and resources for lab studies
• Precision medicine – targets specific to certain patient sub-populations
• Increasing the probability of clinical success

•  Key areas for target evidence
• Human genetics – disease-to-gene linkages in genome-wide association studies (GWAS)
• Genomics – expression of the target in diseased tissues
• Known drugs or tool compounds
• Clinical trial status
• Model organism phenotypes
• Large scale genome-wide gene knock-out and/or overexpression datasets

• Tremendous growth in genomics technologies, databases, analytical tools and query 
interfaces

8



Example: The Apothecary Within – Targeting Human-Microbial Crosstalk

9

§ Microbiome metabolism of dietary fibers generates many 
diverse metabolites with positive immuno-modulatory 
effects.

§ Metabolites are advantageous starting points for drug 
discovery:

§ Known modulators of host immunity (i.e., Cohen et al. 2017. 
Nature 549:48). 

§ Well-tolerated as endogenous molecules.
§ Evolutionary optimized metabolite-receptor pairing for 

selectivity and specificity.
§ Many successfully launched drugs have “metabolite-

like” properties (Dobson et al. 2009 Drug Discovery Today 14:31).

§ Challenge: Low-throughput of current experimental 
approaches to identify potential metabolite ligand-receptor 
linkages.

§ Can we accelerate the discovery of useful metabolite-
protein ligand pairings via in silico hypothesis generation?

§ Then test/validate some predictions with in vitro cellular assays.

Saha et al. 2016. Drug Discovery Today 21:692 



The Human Microbiome Project 2 (HMP2)

10

§ Inflammatory bowel disease (IBD) patients:

§ CD: Crohn’s disease
§ UC: Ulcerative colitis

§ Multi-omics longitudinal assays:

§ Human host genetics (though underpowered for GWAS)
§ RNASeq from human biopsies
§ Metagenome, metatranscriptome, metaproteome & stool 

metabolome
Controls 
(nonIBD)

Crohn’s 
disease (CD)

Ulcerative 
colitis (UC) Tot

Participants 26 49 30 105
Metagenomic 

samples 429 750 459 1638

Metabolomic 
samples 135 265 146 546

RNAseq samples 51 127 74 252

Dr. Andrea Nuzzo, 
Early Talent PDF;
Assoc. Dir., GSK

Cell Host & Microbe, 2014, 16:3, 276-289, https://doi.org/10.1016/j.chom.2014.08.014 

https://doi.org/10.1016/j.chom.2014.08.014


Computational and In vitro Validation Workflow

11

Metabolomics
(548 metabolites verified in HMDB, 

Human Metabolome Database)

Human biopsy transcriptomics
(43870 transcripts) 

Machine 
learning
(XGBoost & 

consensus scoring)

Chemoinformatics
metabolite analogs

Tanimoto similarity ≥ 0.85
TverskyⱭ=0.05 similarity ≥ 0.95

Differential expression and 
pathway enrichment analysis

Functional 
assays 

databases

Genome-wide association 
studies (GWAS) 

Metabolite-target 
pair evaluation

In vitro validation

Analog cpds
Cpd-target 

pair w/MOA

Relevant metabolites

Rele
va

nt
 ta

rg
et

s

* identified in the Human Metabolome Database [HMDB] Nuzzo…Brown. 2021. Commun. Biol. (Nature). 4:288

Pathway Mapping



Metabolomics and Transcriptomics in IBD Samples
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Fig. 1 Metabolomics results and comparisons to the original HMP2 IBD study9 (HMP2). a UMAP analysis of the metabolomics sample distribution by
Crohn’s disease (CD) and Ulcerative Colitis (UC) patients and controls (nonIBD). b Volcano plot showing the differential abundance of each metabolite per
disease state against the consensus scoring of each state. c Number of metabolites considered relevant in HMP2 and current study per disease state,
subdivided into overlapping and non-overlapping subsets. d Total number of metabolites selected relevant in each study. e Intersection matrix between
metabolites selected each study. f Correlation plot between the bootstrapped power estimation method used to determine metabolite differential
abundance between CD and UC patients results. g Correlation between the consensus scoring used in this study and HMP2 FDR-adjusted p values for each
metabolite (refer to Table 1 for samples composition).
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We also built connections based on co-directionality between
metabolite depletion and corresponding downregulation of
perspective targets. For example, GPR119 was downregulated in
the UC cohort (log2fc=−1.39) and its known activator, linoleoyl
ethanolamide (pxC50= 5.66) was significantly depleted in UC
patients (Supplementary Data 1). Neuronal acetylcholine receptor
subunit beta-2 (CHRNB2) was downregulated in UC patients
(log2fc=−1.08) where L-acetylcarnitine and cotinine were
depleted, both analog to acetylcholine (Tverskyα=0.05 similarity
=0.95 and 0.99), a strong inhibitor of CHRNB2 (pxC50= 8.8).
Nitric oxide synthase 2 (NOS2), upregulated in IBD patients
(log2fc= 2.60[CD]; 3.49[UC]), was connected to the depletion of
negative modulators such as L-arginine (pxC50= 6.52, log10fc=
−0.31[CD]; −0.19[UC]).

Assigning candidate metabolites to targets with genetic evi-
dence. We retrieved 808 genes with genetic association to IBD
from the GWAS catalog13 and an extensive published review of
IBD pathways14. These genes were intersected with target-
compound assay and HMP2 datasets which resulted in 464
potential unique pairings of candidate genetic targets with
metabolite modulators (Supplementary Data 4), 13 of which have

metabolites with known modulation mechanisms (Fig. 4a–d;
Supplementary Data 5).

CXCR1 and CXCR2 were mapped to a regulatory variant
(rs11676348-T) statistically associated with an increase risk to
UC15 (Supplementary Fig. 5), and in our study were mapped to
an inhibitor, ibuprofen. An intronic variant statistically associated
to inflammatory skin disease (rs4795067)16 is mapped to NOS2,
which is also part of enriched nitric oxide and microbe-sensing
pathways, both involved in IBD phenotypes (Fig. 4a); we
connected NOS2 with the scarcity of arginine, an inhibitor.
Other metabolite–target pairings, although not differentially
expressed in the HMP2 dataset, had interesting genetic and
metabolomics associations. For instance, an intergenic variant
(rs79243092-C) mapped to gamma-aminobutyrate receptor
subunit 2 (GABRG2) is linked to an increase in macrophage
inflammatory protein 1b in Europeans17. In our study we linked
GABRG2 to several conjugated bile acids and corticosteroids
depleted in IBD, including oleanolic acid, through ganaxolone
(CHEMBL1568698) and allopregnanolone (CHEMBL207538),
two activator compounds (Fig. 4b). Finally, variant rs56330463-
C mapped to the serotonin receptor (HTR4) is associated with
increase in monocytes, an inflammatory phenotype18. Notably,
serotonin was depleted in UC an CD patients while its precursor,
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Fig. 3 Overview of the transcriptomics analysis results. a UMAP analysis of the transcriptomic samples by biopsy location. b Volcano plots representing
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interactions of interest between targets with expression on the vertical axis and perspective modulator metabolite differential abundances on the horizontal
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Fig. 1 Metabolomics results and comparisons to the original HMP2 IBD study9 (HMP2). a UMAP analysis of the metabolomics sample distribution by
Crohn’s disease (CD) and Ulcerative Colitis (UC) patients and controls (nonIBD). b Volcano plot showing the differential abundance of each metabolite per
disease state against the consensus scoring of each state. c Number of metabolites considered relevant in HMP2 and current study per disease state,
subdivided into overlapping and non-overlapping subsets. d Total number of metabolites selected relevant in each study. e Intersection matrix between
metabolites selected each study. f Correlation plot between the bootstrapped power estimation method used to determine metabolite differential
abundance between CD and UC patients results. g Correlation between the consensus scoring used in this study and HMP2 FDR-adjusted p values for each
metabolite (refer to Table 1 for samples composition).
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Metabolites Differentially Expressed Genes (DEGs)

§ Differential abundance of metabolites and gene RNA-seq in CD and UC patients compared to non-IBD subjects
§ Prioritized known metabolites reported in the Human Metabolome Database.
§ Gene transcripts were aligned to Genome Reference Consortium Human Build 37 (GRCh37).

After ML analyses, top quartile (n = 192) to downstream analysis) Total DEGs n = 2107 of which 820 DEGs shared between CD & UC



Connecting Metabolites and Drug Targets

13

§ After filtering, 135 metabolites provisionally connected to 80 perspective proteins.

§ Distribution of connections between metabolite classes, modulation type and drug target classes (numbers represent 
unique targets per drug target class [ n = 61]). Some genes and metabolites have multiple interactions)

§ Filtered for metabolite-protein pairs with high binding affinity (i.e., either pIC50 or pEC50 values ≥5.5) 
§ Highly pleiotropic metabolites and targets (≥ 20 predicted interactions) were removed. 

Nuzzo…Brown. 2021. Commun. Biol. (Nature). 4:288

macro-categories with expected modulatory activity against 9
macro-categories of drug targets (Fig. 2b). For example, 7-
methylguanine, is structurally similar (Tverskyα=0.05 similarity =
0.96) to 8-aminoguanine (CHEMBL8040) which is an inhibitor
(pxC50= 5.8–6.2) of purine nucleoside phosphorylase (PNP).
Among the lipid-like metabolites, heptanoic acid was connected
through azelaic acid (CHEMBL1238, Tverskyα=0.05 similarity=
0.955) to the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) and peroxisome proliferator-activated
receptors alpha (PPARA) with high inhibitory activity (pxC50=
6.0 and 8.6). Hydrocinnamic acid, depleted in both UC and CD
patients was connected to cytochrome P450 p1a2 (CYP1A2)
(Tanimoto similarity= 0.89) via a strong analog inhibitor (pxC50
= 8.3). Nicotinic acid (underrepresented in CD and UC patients)
was connected to its known receptor, the hydroxycarboxylic acid
receptor 2 (HCAR2 or GPR109a), whereas the product of its
degradation, nicotinuric acid, was overrepresented and connected
to Lamin A/C protein (LMNA) through a binder analog
(Tverskyα=0.05 similarity= 0.97, pxC50=7.65) with unknown
directionality. Alpha-carboxyethyl hydroxychroman (alpha-
CEHC) was also connected to LMNA but also to the thyroid
hormone receptor beta (THRB). However, since the modulatory
action of the analog compound is unknown and alpha-CEHC is
depleted in UC but enriched in CD, we were unable to infer
directionality of the interaction. Oleanolic acid was connected
through other plant terpenoids (urolic and moronic acid) and
bacterial-specific sphingolipids (i.e., CHEMBL1334750) to several
targets of interest for pharmaceutical purposes such as GPBAR1
(G Protein-Coupled Bile Acid Receptor 1) and PTPN7 (Protein
tyrosine phosphatase non-receptor type 7).

Connecting gene expression and metabolite abundance. We
then considered differential expressed genes (DEGs) comparing
non-IBD against CD and UC states respectively, accounting for
the heavy impact of the biopsy location variable (Fig. 3a). A total
of 2170 DEGs occurred overall, of which 820 DEGs were shared
by both CD and UC (Fig. 3b). Pathway enrichment analysis
determined a high representation of immune inflammation-
related pathways (i.e., Cytokine Signaling, NRF2 non−canonical
NF− kB pathway, Interleukin 3, 14 and 17 signaling) (Supple-
mentary Fig. 4; Supplementary Data 3).

Starting from DEGs, we proceeded to parse connections with
differentially abundant metabolites using the ChEMBL database, by
inverting the workflow described above. After parsing all possible
modulators among for DEGs, top-ranking metabolites were
considered modulators if having any similar analog with functional
activity against the candidate gene represented by the transcript,
resulting in a total of 45 prospectively druggable targets.

Several metabolites underrepresented in IBD were classified as
tentative negative modulators of upregulated targets. For example,
receptors of the CXC ligand 8 (CXCL8 or IL8) chemokine family,
CXCR1 and CXCR2, were overexpressed while their known
negative modulator compounds, ibuprofen (pxC50= 7.0) and its
HMP-2 derivative, 2-hydroxibuprofen, (Supplementary Data 3),
were under-represented in IBD patients although below the
consensus scoring threshold (Supplementary Data 1).

Another example is HCAR2 (GPR109a) which was upregulated
in CD and UC patient biopsies (log2fc= 6.15 [CD] and 4.51
[UC]) while its competing modulators, nicotinic acid and
trigonelline were depleted and enriched, respectively, in IBD
patients’ stool (Fig. 3c; Supplementary Data 2).
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Metabolite Co-directionality with Target Gene Expression

14

§ Reversing transcriptomic disease signature using candidate modulators

Trigonelline  
(↑ in IBD)

HCAR2*
(↑ in IBD)

Activators of HCAR25 *HCAR2 higher 
expression mediates 
UC inflammation 5

Activator 
analogs

Proposed 
modulation

Metabolite abundance 
in disease

Target expression 
in disease

Linoleoylethanol-
amide 

(↓ in IBD)

GPR119
 (↓in IBD) Lowers dermatitis in 

mice6
Lowers inflammatory 
states by releasing 
GLP-17

Activator 
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NOS2
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Inhibitor 
analog

Accelerates 
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Pro-inflammatory nitric 
oxide synthase 2
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Linkages to Disease Genetics

15

§ Metabolites passing thresholds and tractable targets with genetic evidence 
(GWAS and IBD-specific genetic studies)

§ Retrieved 808 genes with genetic associations to IBD
§ Identified 464 potential pairings between genetic targets with metabolite 

modulators, 13 with known modulation mechanisms
GABRG2

NOS2

Nuzzo…Brown. 2021. Commun. Biol. (Nature). 4:288

GABA receptor gamma2



in vitro Validation Assays for Selected Metabolites
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§ Selected 11 metabolites for 
profiling in human primary cell-
based phenotypic assays 
(BioMAP® Diversity PLUS panel)

§ 8 metabolites showed significant 
modulation of immune 
biomarkers in one or more cellular 
systems.

§ Summary
§ 135 metabolites provisionally 

connected to 80 different 
targets in IBD

§ 983 potential metabolite-
target interactions identified

§ Immuno-modulating 
metabolites and targets are 
potential starting points for 
drug discovery

§ In vitro assays lend support 
to this approach

§ Oleanolic acid (OA) showed activity in T-cell dependent B-cell activation (BT), 
coronary artery smooth muscle (CASM3C), fibroblasts (HDF3CGF) assays

§ OA is a connected ligand of GABRG2, PTPN7 and GPBAR1

Nuzzo…Brown. 2021. Commun. Biol. (Nature). 4:288

“negative modulation” (including inhibitors, antagonists, etc.) or
“other” for all uncharacterized or unclear interactions. Additionally,
we used a target classification based on mechanism of action for
drug and treatment37 and found that the most connected proteins

were well-known drug targets such as GPCRs, transcriptional fac-
tors and various enzymes.

Several host–metabolite pairings emerge from our analyses
which have yet to be explored for drug purposes to the best of our

Fig. 5 Examples of biomarker readouts from in vitro cell assays for four of eleven tested metabolites. a Butyrate, b Nicotinic acid, c Alpha-CEHC and d
Oleanolic acid. Metabolites were administered at different concentrations, here ranked from higher to lower (concentrations in Supplementary Data 8).
Readouts graph show the differential abundance vs baseline for the B and T cell system (BT), arterial smooth muscle cells (CASM3C) and wound healing
(HDF3CGF) (full results for all 11 metabolites are shown in Supplementary Fig. 6). Knowledge-based graphs on the right represent possible pathway
connections between the proposed targets for each metabolite and the most significant biomarker readouts. Interactions are color-coded for positive
(green), negative (red) and unknown (gray) modulation.
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Outline

1. Overview of drug research and development

2. Integrative biomedical databases 

3. Human centric data (genetics, clinical trials, drug and tool compounds)

4. Multi-omics evidence databases 

5. Protein characterization and interactions databases

6. Comparative genomics and model organism databases 

7. Cancer relevant databases

8. Concluding remarks & discussion 
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Integrative vs Specialized Biomedical Databases and Interfaces

• Integrative biomedical databases – consolidate multiple specialized databases:
• NCBI*: https://www.ncbi.nlm.nih.gov/ (gene viewer)
• Open Targets*: https://www.opentargets.org/
• ENSEMBL: https://useast.ensembl.org/index.html

• Specialty resources: 
• Human Genetics – GWAS Catalogue*: https://www.ebi.ac.uk/gwas/ 
• Mouse phenotypes – Mouse Phenome Database (Jackson Lab): https://phenome.jax.org/  
• RNA expression – GTEX*: https://gtexportal.org/home/ ; Single Expression Atlas: https://www.ebi.ac.uk/gxa/sc/release-notes.html 
• Protein Atlas – protein expression*: https://www.proteinatlas.org/ 
• Pathways – Reactome*: https://reactome.org/  ; WikiPathways: https://www.wikipathways.org/  ; IntAct: https://www.ebi.ac.uk/intact/home 
• Protein annotations – UniProt*: https://www.uniprot.org/ 
• Protein-protein interactions – String*: https://string-db.org/ 
• Metabolomics – The Human Metabolome Database*: https://hmdb.ca/

• Clinical trials and tool compounds:
• Clinical trials -- ClinicalTrials.gov*: https://clinicaltrials.gov/ 
• Drugs and targets – DrugBank*: https://go.drugbank.com/  
• Bioactive molecules and interactions: Chembl*: https://www.ebi.ac.uk/chembl/ 

• Cancer:
• The Cancer Genome Atlas Program (TCGA)
• Integrative data-sources for cancer functional genomics – Xenabrowser*: https://xenabrowser.net/
• Cancer dependency map -- DepMap*: https://depmap.org/portal/ 
• Cancer cell lines – Cancer Cell Line Encyclopedia (CCLE) *: https://sites.broadinstitute.org/ccle/
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* Demos covered in this workshop

https://www.ncbi.nlm.nih.gov/
https://www.opentargets.org/
https://useast.ensembl.org/index.html
https://www.ebi.ac.uk/gwas/
https://phenome.jax.org/
https://gtexportal.org/home/
https://www.ebi.ac.uk/gxa/sc/release-notes.html
https://www.proteinatlas.org/
https://reactome.org/
https://www.wikipathways.org/
https://www.ebi.ac.uk/intact/home
https://www.uniprot.org/
https://string-db.org/
https://hmdb.ca/
https://clinicaltrials.gov/
https://go.drugbank.com/
https://www.ebi.ac.uk/chembl/
https://xenabrowser.net/
https://depmap.org/portal/
https://sites.broadinstitute.org/ccle/


NCBI Gene: General Gene Info

• NCBI “gene” is a good starting point: https://www.ncbi.nlm.nih.gov/ 
• NOS2 as an example: https://www.ncbi.nlm.nih.gov/gene/4843 
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Gene ID #4843 

Gene name aliases

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/gene/4843


Open Targets Platform 
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• Identifying evidence implicating drug 
targets with diseases or phenotypes 
is a major challenge.

• Open Targets (OT) is a public-private 
partnership between the EMBL / EBI 
and several pharma companies.

• The OT Platform organizes public 
data-sources in order to enhance 
open-source target discovery and 
exploration.

• Four main entities in OT:
A. Data model
B. Entity annotation
C. Evidence and association 

scoring
D. Applications and data access https://platform-docs.opentargets.org/getting-started 

https://platform.opentargets.org/ 

https://platform-docs.opentargets.org/getting-started
https://platform.opentargets.org/


Open Targets Platform
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A. The OT Data Model focuses on three main entities:
A. Target understood as any candidate for drug binding molecule
B. Disease or Phenotype including any disease indications, phenotypes, measurements, biological processes and other relevant traits.
C. Drug molecules that can act as medicinal products.

B. Entity annotations
A. Target tractability assessment
B. Target safety
C. Baseline expression
D. Molecular interactions
E. Clinical signs and symptoms
F. Pharmacovigilance
G. Bibliography

C. Evidence generation and association scoring
A. Target-disease evidence
B. Target-disease associations

D. Applications and data access
A. Web interface
B. Data access – programmatic 

https://platform.opentargets.org/ 

https://platform.opentargets.org/
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Open Targets Platform
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https://platform.opentargets.org/ 

• Query entry for “gene”, “disease” or “drug”
• Caveat – OT is human “non-communicable” disease centric

• Infectious diseases and pathogen genomics are not represented
• Example using gene “PDCD1” (alias PD1) which encodes “Programmed cell death protein 1”

• One of the most successful targets for cancer immuno-therapies (i.e., Merck’s Pembrolizumab [Keytruda] )

https://platform.opentargets.org/


Open Targets Platform
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https://platform.opentargets.org/ 

• Try and contrast the results of the 3 types of initial search queries:

• Gene name: (PDCD1)
https://platform.opentargets.org/target/ENSG00000188389/associations 

• Drug name: (Pembrolizumab)
https://platform.opentargets.org/drug/CHEMBL3137343 

• Disease: (melanoma)
https://platform.opentargets.org/disease/EFO_0000756/classic-associations 

• Evidence and association scoring – approximation to prioritize and sort evidence
• Note different sources associated with each query type.

• Take a deeper dive:
• “Associated targets”: Use evidence specific filters
• “Profile”: explore features for gene, drug and disease searches

https://platform.opentargets.org/
https://platform.opentargets.org/target/ENSG00000188389/associations
https://platform.opentargets.org/drug/CHEMBL3137343
https://platform.opentargets.org/disease/EFO_0000756/classic-associations


Human Genetics: GWAS Catalogue

• Some studies suggest that targets with genetic evidence for disease have a two-fold greater probability for clinical success 
(Nelson et al.. 2015. Nature Genetics 47:856)

• GWAS Catalogue is a central repository of genome-wide association studies: https://www.ebi.ac.uk/gwas/home 
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• Flexible search queries include disease, SNP ID, 
study author, human chromosome localization, 
gene name and genomic coordinates

• Example using gene name “NOS2”:
https://www.ebi.ac.uk/gwas/search?query=NOS2 

• Available data:
• Associations of DNA variants (variant and 

risk allele) with Traits
• Studies behind the data
• Traits summary

https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/search?query=NOS2


Other Sources of Drug-Target Information 
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• Drug Bank https://go.drugbank.com/  
• Open source knowledgebase for 500,000+ drugs and drug products
• Query searches for drugs, targets, pathways and indications
• Large scale data downloads are free for academic research; surcharges for commercial use. 
• Example, gene: PDCD1

• The Human Metabolome Database https://hmdb.ca/ 
• Open source knowledgebase for human metabolites and their interactions
• Query searches for metabolites, diseases, proteins pathways and reactions indications
• Example, metabolite: L-tryptophan ; gene: IDO1

• Chembl https://www.ebi.ac.uk/chembl/ 
• Extensive and well-curated reference db for bioactive molecules
• Query searches for drugs, genes, proteins, tissue, compound structure
• Example, gene: NOS2, UniProt ID: P35228

• ClinicalTrials.gov  https://clinicaltrials.gov/ 
• Database of global clinical trials – targets with launched drugs are the most validated targets!
• Clinical query terms. Not directly linked to gene name or id.
• Example, gene: EFGR, PD-1

https://go.drugbank.com/
https://hmdb.ca/
https://www.ebi.ac.uk/chembl/
https://clinicaltrials.gov/


Exercise 1: Human Centric Databases

• Try a few searches for one or more of the platforms
• You can use the suggested example queries or try your own favorite genes, drugs, metabolites and/or disease:

 
1. Searching Opentargets: https://platform.opentargets.org/  

1. Gene name: (PDCD1)
2. Drug name: (Pembrolizumab)
3. Disease: (melanoma)

2. Search GWAS Catalogue and contrast the number of coding variants for PDCD1 vs NOS2

3. Search Drug Bank https://go.drugbank.com/  
1. Example, gene: PDCD1

4. Search The Human Metabolome Database https://hmdb.ca/ 
1. Example, metabolite: L-tryptophan ; gene: IDO1

5. Search Chembl https://www.ebi.ac.uk/chembl/ 
1. Example, gene: NOS2 UniProt ID: P35228

6. Search ClinicalTrials.gov  https://clinicaltrials.gov/ 
1. Example, gene: EFGR 27

https://platform.opentargets.org/
https://go.drugbank.com/
https://hmdb.ca/
https://www.ebi.ac.uk/chembl/
https://clinicaltrials.gov/
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Deep Dive Into a Target Hypothesis  
• Example: Oncology immunotherapy (OI) is a highly active area for novel therapeutics.

• Modulation of T cell and natural killer (NK) responses by inhibiting any immune suppressor mechanisms of the  
tumor cell is an important strategy. 

• Inhibition of CLEC2D and CD161 (KLRB1) interaction could re-activate T cell and NK cell killing of tumor cells. 

29
Inhibitory receptors shared by T cells and NK cells along with tumor cell receptor partners.

Kyrysyuk & Wucherpfennig. 2023. Annu. Rev. Immunol. 41:17



CD161 (KLRB1) and CLEC2D Genomic Organization
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• CD161 now called KLRB1 (killer cell lectin like receptor B1): https://www.ncbi.nlm.nih.gov/gene/3820 
• Genomic regions, transcripts, and products

• Genome browser allows visualization of customize “tracks” for mapping features onto the gene.
• Defaults is gene-centric view with ClinVar variants; RNA-seq exon coverage, RNA-seq intron features
• More options under “Tools” and “Tracks” .
• Zoom in “+” to level of nucleotides or Zoom out “–” to exploring neighboring genes and features

KLRB1
CLEC2D

• KLRB1 and CLEC2D are protein ligands,
     also in chromosomal proximity
• Many homologous or related CLEC and 

KLR genes near-by

https://www.ncbi.nlm.nih.gov/gene/3820


• Human CLEC2D encodes 5, possibly 6, mRNAs which results in potential protein isoforms with different AA lengths 

• https://www.ncbi.nlm.nih.gov/datasets/gene/id/29121/products/ 
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Gene Level Transcript Variants: Alternative 
Transcripts Which Might Encode Protein Isoforms

https://www.ncbi.nlm.nih.gov/datasets/gene/id/29121/products/


Open Targets Platform
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https://platform.opentargets.org/ 

• Gene name: (KLRB1)
https://platform.opentargets.org/target/ENSG00000111796/classic-associations 

• Gene name: (CLEC2D)
https://platform.opentargets.org/target/ENSG00000069493/classic-associations

• Associated Diseases Tab
• Profile Tab – Summaries complied from multiple sources:

https://platform.opentargets.org/
https://platform.opentargets.org/target/ENSG00000111796/classic-associations
https://platform.opentargets.org/target/ENSG00000069493/classic-associations
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Tissue Specific Gene Expression

• KLRB1 killer cell lectin like receptor B1 [ Homo sapiens (human) ] https://www.ncbi.nlm.nih.gov/gene/3820
• RNA-seq data from tissue samples taken from 95 human individuals representing 27 different tissues

https://www.ncbi.nlm.nih.gov/gene/3820


Genotype-Tissue Expression (GTEx) Project

• The most definitive gene expression db is GTEx: https://gtexportal.org/home/ 

• (GTEx) project is an ongoing effort to build a comprehensive public resource to study tissue-specific gene 
expression and regulation. 

• Samples were collected from 54 non-diseased tissue sites across nearly 1000 individuals, primarily for 
molecular assays including WGS, WES, and RNA-Seq.. 

• Remaining samples are available from the GTEx Biobank upon request. 

• The GTEx Portal provides open access to data including gene expression, QTLs, and histology images.

• Can browser and search all data by:
• Gene

• Genetic variant

• Tissue

• GTEx histology images

34

https://gtexportal.org/home/


Bulk Tissue Gene Expression (mRNA): CLEC2D
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https://gtexportal.org/home/gene/CLEC2D Filters: Subset = none; Scale = log; Tissue sort; Median sort. Outliers = on

• Bulk Tissue Expression
• Single Cell Expression
• Exon Expression
• Single-Tissue eQTLs
• Single-Tissue sQTLs
• Single-Tissue ieQTLs
• Single-Tissue isQTLs

https://gtexportal.org/home/gene/CLEC2D


Bulk Tissue Gene Expression (mRNA): KLRB1
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https://gtexportal.org/home/gene/KLRB1 Filters: Subset = none; Scale = log; Tissue sort; Median sort. Outliers = on

https://gtexportal.org/home/gene/KLRB1


Human Protein Atlas

• The Human Protein Atlas (HPA) maps all the human proteins in cells, tissues, and organs using an integration 
of various ‘omics technologies, including antibody-based imaging, mass spectrometry-based proteomics, 
transcriptomics, and systems biology. https://www.proteinatlas.org/ 

• The HPA has 12 separate sections – gene names as the initial query.
• CLEC2D example: https://www.proteinatlas.org/search/CLEC2D

 

37https://www.proteinatlas.org/ENSG00000069493-CLEC2D/tissue 

https://www.proteinatlas.org/
https://www.proteinatlas.org/search/CLEC2D
https://www.proteinatlas.org/ENSG00000069493-CLEC2D/tissue


Exercise 2: Multi-omics Databases 

• Try a few searches for one or more of the ‘omics platforms
• You can use the shown examples or try your own favorite genes:

 
1. For a given gene, look-up its genomic structure, gene expression and transcript variants using NCBI, 

“gene”: https://www.ncbi.nlm.nih.gov/gene/ 
2. For the same gene, contrast the results in Open Targets: https://platform.opentargets.org/  
3. Reconstruct tissue specific expression using GTEx: https://gtexportal.org/home/ 

1. Produce a figure where tissue expression levels are plotted by log values and ordered from high to low.

4. Produce a plot of proteomics expression by organs / tissues using The Human Protein Atlas: 
https://www.proteinatlas.org/  

38

https://www.ncbi.nlm.nih.gov/gene/
https://platform.opentargets.org/
https://gtexportal.org/home/
https://www.proteinatlas.org/
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UniProt

• UniProt https://www.uniprot.org/
•  A comprehensive and well-curated resource for protein sequence and functional information

• Query entry point can be protein name, gene name, species, organism or protein ID

• Extensive entry information

• Customize columns allows to select and re-order data for downloading

• Multiple tools enabling sequence searches
• BLAST
• Align
• Peptide Search
• ID mapping

• Example, Genes: KLRB1 & CLEC2D:

• https://www.uniprot.org/uniprotkb?query=KLRB1 

• https://www.uniprot.org/uniprotkb?query=CLEC2D
40

https://www.uniprot.org/
https://www.uniprot.org/uniprotkb?query=KLRB1
https://www.uniprot.org/uniprotkb?query=CLEC2D


Protein Interaction Databases

• Receptor-ligand relationships, also called protein-protein interactions 
(PPIs), have a central role in all cellular functions.

• Dysfunctional PPIs are associated with many diseases – thus PPIs are 
potential therapeutic targets.

• Most integrative databases (i.e., NCBI, Open Targets & Uniprot) include 
PPIs evidence in their gene / protein annotations.

• These PPI annotations are pulled from one or more  primary sources of 
curated or predicted PPIs such as:

• STRING-db https://string-db.org/ 
• Protein-Protein Interaction Networks & Functional Enrichment Analysis
• v12.0: 12535 organisms; 59.2 Mln proteins; >20 Bln Interactions
• Query search by gene or protein name
• Multi-data formats for downloading (graphical, tabular, etc.).
• Example, gene: KLRB1

• Select “Homo sapiens”
• Cluster view -- Click-on“More”; “Legend”; “Viewers”; “Export”

• IntAct https://www.ebi.ac.uk/intact/ 
• All interactions are derived from literature curation or direct user submissions

• Biogrid https://thebiogrid.org/
• Includes Open Repository of CRISPR Screens (ORCS) 41

https://string-db.org/
https://www.ebi.ac.uk/intact/
https://thebiogrid.org/
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• Reactome: https://reactome.org/ 
• Open source, curated pathway database
• Query by gene, protein, metabolite, 

pathway name or ID
• Example, gene: KLRB1

• Pathway ontology
• Subcellular location

• Links to pathway map

• Also see: 
• KEGG Pathways:

 https://www.genome.jp/kegg/ 

• WikiPathways: 
https://www.wikipathways.org/ 

Pathway Mapping and Analyses

https://reactome.org/
https://www.genome.jp/kegg/
https://www.wikipathways.org/
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Pathway Mapping and Analyses

https://reactome.org/PathwayBrowser/#/R-HSA-198933 

https://reactome.org/PathwayBrowser/


Exercise 3: Protein Characterization and Interactions Databases

• Try a few searches for one or more of the protein-focused platforms
• You can use the shown examples or try your own favorite genes:

 
1. For a given protein, look-up its record and select about 4 or 5 different records (could be the 

homologs in different species) using UniProt: https://www.uniprot.org/ 
1. Create a customized table of several features then download the CSV formatted file (readable by MS Excel)

2. Create a simple protein interaction network using STRING-db: https://string-db.org/ 

3.  For a given gene, look-up its associated pathways in Reactome: https://reactome.org/ 
1. If you have time, compare differences in output using WikiPathways (https://www.wikipathways.org/ ), IntAct 

(https://www.ebi.ac.uk/intact/ )  and/or Biogrid (https://thebiogrid.org/ )

44
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• Key questions in drug discovery which might be 
addressable by comparative genomics

• Inter-species homology: How similar is the targeted 
protein between human and model organism 
species?
• Disease translation from preclinical in vivo 

model organisms through to humans
• Interpretation of drug efficacy and safety in 

sentinel species (mouse, rat, dog, NHPs)
• For infectious diseases, evaluate target 

variation across highly mutable pathogens

• Intra-species homology: Within the human genome, 
do any other proteins have significant sequence 
similarity to the target protein?
• Design of counter screens to reduce off-target 

effects and increase drug targeting specificity
• Identify potential target and pathway 

redundancies which might impact drug efficacy
46

Comparative Genomics and Phylogenomics

https://www.practicallyscience.com/model-organisms-and-dnas-molecular-clock/ 

https://www.practicallyscience.com/model-organisms-and-dnas-molecular-clock/


The Quest for Novel Antibiotics
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§ In the late 1990’s SmithKlineBeecham (later GSK) 
launched a genomics-based approach for the discovery of 
novel targets for antibiotics 

§ Bactroban is a highly successful topical antibiotic

§ The compound pseudomonic acid (Mupriocin™) is a 
specific inhibitor of bacterial isoleucyl-tRNA synthetase 
(IleRs), one of 20 amino-acyl tRNA synthetases (AA-tRS).

§ In late 1990’s, GSK(fSB) had a new initiative focused on 
developing novel inhibitors of other AAtRSs for oral 
and/or IV delivered antibacterials.



Trans-Domain Horizontal Gene Transfer (HGT)

48Brown et al. 1998. Current Biol. 8:365

§ Genomes of certain key pathogens (i.e., 
Staph, anthrax) harbor two copies of IleRS
§ A bacterial-like IleRS – mupirocin-

sensitive
§ An eukaryote-like IleRS – mupirocin-

high resistant (IRS-HR)
§ IRS-HR loci was not evident in available 

published Staph genomes but found in 
> 30% of clinical isolates used by GSK.

§ In 2022, GSK announced positive results 
for Ph2a trial of GSK30336656 an inhibitor 
of Mycobacterium tuberculosis LeuRS.

§ Subsequently, 
similar HGT 
events found for 
AAtRSs (Brown et al. 
2003. EMBO Reports. 
4:692)



Targeting Aurora Kinases in Cancer: Evolutionary Factors
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§ Aurora Ser/Thr kinases are key regulators of mitotic chromosome segregation.
§ Targeting specific Aurora family members (Aurora A, B or C) is a goal for cancer therapies.
§ Phylogenomic analyses suggests Aurora-A occurs throughout eukaryotes while Aurora B 

and C evolved via two gene duplications, first in vertebrates and, second in mammals. 
§ Structurally, the druggable ATP-binding domain of Aurora A differs by only 3 amino acids to 

those of of Aurora B and C, which have identical domains to each other. 
§ Complicates the development of specific ATP inhibitors for each Aurora family but 

supports inhibition AurA alone or AurB plus AurC.

BMC Evolutionary Biology 2004, 4:39 http://www.biomedcentral.com/1471-2148/4/39

Page 4 of 10
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Phylogenetic tree of Aurora-A, Aurora-B, and Aurora-C kinases rooted by PLK4 kinasesFigure 2
Phylogenetic tree of Aurora-A, Aurora-B, and Aurora-C kinases rooted by PLK4 kinases. Major organism groups 
(with colours, fonts) are mammals (red, bold italic), cold-blooded vertebrates (deep blue, italic), urochordates (orange, italic), 
invertebrates, (purple, italic), plants (green, italic), fungi (black, italic) and protists (light blue, italic). "Original" indicates the first 
Aurora identified from Drosophila melanogaster [3]. Plant sequences are identified by their Genbank accession number. Stacks of 
numbers show, in descending order, the percent occurrence of nodes in greater than 50% of 1000 bootstrap replicates of 
neighbor joining (plain text) and maximum parsimony (italicized text) analyses or greater than 50% of 10000 quartet puzzling 
steps of maximum likelihood analysis (in curved parentheses) or Bayesian posterior probability (only 0.90 or greater, in square 
parentheses). Asterisks ("*") indicate those nodes supported 70% or greater by the first three tree-building methods and 0.90 
Bayesian posterior probability. Nodes with one or two values less than 50% have dashes ("-") while values less than 50% are 
unmarked. Scale bar represents 0.1 expected amino acid residue substitutions per site.
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The evolutionary analysis presented here also suggests
revisiting the present Aurora nomenclature. Adams et al.
[28] proposed a naming scheme where, irrespective of
species, the original Aurora is known as Aurora-A (also
called AIRK1, Aurora, Aurora-2, AIK, BTAK, human
STK15, mouse STK6 and others), followed by Aurora-B
(also known as AIRK-2, IAL, Aurora-1, AIK2, STK12 and
others) and Aurora-C (or STK13). However, the proposed
nomenclature fails to reflect evolutionary, and possibly
functional, relationships among the Auroras. We suggest
that Aurora-A be retained as the name for all orthologs in
mammals and cold-blooded vertebrates. While Aurora-B
and Aurora-C seem appropriate for mammalian versions,
the ancestral cold-blooded vertebrate "Aurora-B" might
be renamed "Aurora-BC". As for invertebrates, the so-
called Aurora-A or Aurora-B genes are clearly not
orthologs to their respective vertebrate counterparts.
However, introducing a new nomenclature here might
simply add further confusion to the field.

Evolution of an Anti-Cancer Target
There have been several recent reports of Aurora kinase
inhibitors that are under development by pharmaceutical
or biotechnology companies for cancer treatment. The
compounds Hesperadin (Boehringer Ingelheim [21]) and
ZM447439 (AstraZeneca [22]) are suggested to be tar-
geted to Aurora-B. While both studies show lesser levels of
compound inhibition of Aurora-A as well as several other
kinases, neither report included Aurora-C in their kinase
profile. Selective inactivation of multiple kinases is not an
undesirable pharmaceutical profile for a small molecule
inhibitor and, in fact, could be the best strategy to achieve
maximal clinical efficacy of an anti-cancer agent [38].
Indeed, an intense area of anti-cancer research is the
development of small molecular ATP analogues that gen-
erally target the kinase domain of protein kinases [39]. For
example, Gleevec (also known as imatinib and made by
Novartis) for chronic myelogenous leukemia, is a small-
molecule inhibitor that targets BCR-ABL, c-Kit and

Comparisons of the catalytic domains of human Aurora-A, Aurora-B and Aurora-C kinasesFigure 3
Comparisons of the catalytic domains of human Aurora-A, Aurora-B and Aurora-C kinases. A. Crystal structure 
of the catalytic domain of Human Aurora kinase with an adenosine molecule shown in the binding pocket (PDB ID 1muoA) 
[29]. Residues lining the active site are colored purple when invariant and red when variant. B, Multiple sequence alignment of 
Auroras. Using the same color scheme as the structure in panel A, residues identified to be lining the active site are identified 
with invariant residues among all three Auroras marked with an asterisk. Of the 26 residues lining the active site, only three 
vary among the different human Aurora kinases; Leu215, Thr217 and R220 (numbering and residue identity based on Aurora-
A), and all of this variation was found in Aurora-A.

AuroraA FEIGRPLGKGKFGNVYLAREKQSKFILALKVLFKAQLEKAGV 174

AuroraB FEIGRPLGKGKFGNVYLAREKKSHFIVALKVLFKSQIEKEGV 118

AuroraC FEIGRPLGKGKFGNVYLARLKESHFIVALKVLFKSQIEKEGL 84

* **** * * *

AuroraA EHQLRREVEIQSHLRHPNILRLYGYFHDATRVYLILEYAPLG 216

AuroraB EHQLRREIEIQAHLHHPNILRLYNYFYDRRRIYLILEYAPRG 160

AuroraC EHQLRREIEIQAHLQHPNILRLYNYFHDARRVYLILEYAPRG 126

* ***** *

AuroraA TVYRELQKLSKFDEQRTANLYNRIANALSYCHSKRVIHRDIK 258

AuroraB ELYKELQKSCTFDEQRTATIMEELADALMYCHGKKVIHRDIK 202

AuroraC ELYKELQKSEKLDEQRTATIIEEVADALTYCHDKKVIHRDIK 168

*

AuroraA PENLLLGSAGELKIADFGWSVHAPSSRRTTLCGTLDYLPPEM 300

AuroraB PENLLLGLKGELKIADFGWSVHAPSLRRKTMCGTLDYLPPEM 244

AuroraC PENLLLGFRGEVKIADFGWSVHTPLPERKTMCGTLDYLPPEM 210

** ** * * *

AuroraA IEGRMHDEKVDLWSLGVLCYEFLVGKPPFEANTYQETYKRIS 342

AuroraB IEGRMHNEKVDLWCIGVLCYELLVGNPPFESASHNETYRRIV 286

AuroraC IEGRTYDEKVDLWCIGVLCYELLVGYPPFESASHSETYRRIL 252

AuroraA RVEFTFPDFVTEGARDLISRLLKHNPSQRPMLREVLEHPW 382

AuroraB KVDLKFPASVPTGAQDLISKLLRHNPSERLPLAQVSAHPW 326

AuroraC KVDVRFPLSMPLGARDLISRLLRYQPLERLPLAQILKHPW 292

A B

Brown et al. 2004. BMC Evol Biol 4:39



• OrthoDB – Hierarchical catalog of orthologs: https://www.orthodb.org/ 
• KLRB1 Orthologs: https://www.orthodb.org/?ncbi=3820 (originally found in NCBI Gene record: https://www.ncbi.nlm.nih.gov/gene/3820 )
• CLEC2D Orthologs: https://www.orthodb.org/?ncbi=29121 
• Potential impact on in vivo translational studies: Four homologs in rodents vs only one in human and other primates.

• Explore mouse phenotypes associated with each gene for an indication of functional similarity 

• Best practice is to confirm using BLAST > Multiple sequence alignments (MSAs) > phylogenetic analyses.
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Inter-Species Orthologs and Paralogs 

Mouse Gene Phenotypes
https://phenome.jax.org/ 

https://www.orthodb.org/
https://www.orthodb.org/?ncbi=3820
https://www.ncbi.nlm.nih.gov/gene/3820
https://www.orthodb.org/?ncbi=29121
https://phenome.jax.org/


Exercise 4: Inter-Species Orthologs and Paralogs 

1. Try searching for gene orthologs for a particular gene via NCBI gene: 
https://www.ncbi.nlm.nih.gov/gene/   
1. You can use the shown examples or your own favorite genes (can be non-human).
2. Scroll down to the section called, “General Gene Information” 
3. Compare outputs from OrthoDB and NCBI Ortholog
4. Any potential incidences of gene duplication or loss?

2. Look up mouse phenotypes using The Mouse Phenome Database: https://phenome.jax.org/ 
1. Works best if you have the mouse gene name – can be retrieved using the Ortholog databases 
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https://www.ncbi.nlm.nih.gov/gene/
https://phenome.jax.org/


Outline
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3. Human centric data (genetics, clinical trials, drug and tool compounds)

4. Multi-omics evidence databases 

5. Protein characterization and interactions databases

6. Comparative genomics and model organism database and strategies 

7. Cancer relevant databases

8. Concluding remarks & discussion 
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Cancer Genomics Resources

• The Cancer Genome Atlas (TCGA)

• Active from 2006 to 2018 – data available via Genomic Data Commons 

and Xena browser (facilitates analyses as well)

• Concluding project is called The Pan-Cancer Analysis of Whole 

Genomes (PCAWG) 

• International Cancer Genomics Consortium (ICGC)

• ICGC Data Portal closing down June 2024 but data available via Xena 

• Cancer Cell Line Encyclopedia (CCLE)

• Catalogue of Somatic Mutations in Cancer (COSMIC)

• Integrative cancer genomics resources (to be discussed)

• UCSC Xena browser for clinical cancer genomics

• Depmap portal for cell-types and cancer dependencies   
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Cancer Nomenclature

• Mutation types – coding and non-coding regions

• SNPs (single nucleotide polymorphisms) and small INDELs (nucleotide insertions or deletions) 

• Copy number variants (CNVs)

• Gene fusions

• Large structural variants

• Gene-, Transcript-, Exon-, Protein-, LncRNA-, and miRNA-expression

• Epigenetics – DNA methylation  

• Synthetic lethality – Pairs of genes for which an aberration in either gene alone is non-lethal, but co-occurrence of the aberrations 

is lethal to the cell 

• Cancer types

• TCGA coding and abbreviations: https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations  
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The Cancer Genome Atlas Program (TCGA)

• TCGA: https://www.cancer.gov/ccg/research/genome-sequencing/tcga 
• Initiated in 2006, molecularly characterized 20K+ primary cancer and matched normal samples for 33 cancer types.
• Program closed in 2018 but data remains available via the Genomic Data Commons – Data Portal: 

https://portal.gdc.cancer.gov/  
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Xena Functional Genomics Explorer

• Xena: https://xena.ucsc.edu/
• Graphical interface to multiple cancer genomics data-types

• Both on-line and downloadable desktop versions
• TGCA

• TCGA Pan-Cancer Atlas (PANCAN) – Recommended for most analysis 
• TCGA data from Genomic Data Commons (GDC)
• TCGA & GTEX data from the UCSC RNA-seq Recompute Compendium
• Legacy TCGA data

• International Cancer Genome Consortium (ICGC) 
• Pan-Cancer Analysis of Whole Genomes (PCAWG) study
• GDC
• MET500 (metastatic cancer study
• CCLE
• Pediatric data:

• KidsFirst
• Target
• Treehouse Consortium

• Can add and view your own data 
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Xena supports a wide variety of data types 
including:

• SNPs and small INDELs
• Large structural variants
• Segmented copy number, gene-level copy 

number
• Gene-, Transcript-, Exon-, Protein-, LncRNA-, 

and miRNA-expression
• DNA methylation (genes and probes)
• Phenotype, clinical data
• Signature scores, classifications, derived 

parameters

https://ucsc-xena.gitbook.io/project/public-data-we-host 

https://xena.ucsc.edu/
https://ucsc-xena.gitbook.io/project/public-data-we-host


Xena Functional Genomics Explorer

• Xena: https://xena.ucsc.edu/

• Recommend reviewing 
tutorials and walkthroughs

• Python and R APIs

• Install a local hub to analyze 
your own data

• Goldman, M.J., Craft, B., Hastie, M. 
et al. Visualizing and interpreting 
cancer genomics data via the Xena 
platform. Nat Biotechnol (2020).

https://doi.org/10.1038/s41587-
020-0546-8 
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Xena: Exploring EGFR Mutations in Lung Cancer
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• Xena: https://xena.ucsc.edu/

• Do samples that have 
aberrations in EGFR have 
statistically higher expression 
than those without aberrations?

• Is there a survival difference 
between these two groups?

• Is there a gender difference in 
the occurrences of EFGR 
aberrations?

https://ucsc-xena.gitbook.io/project/tutorials/basic-tutorial-section-1  

https://xena.ucsc.edu/
https://ucsc-xena.gitbook.io/project/tutorials/basic-tutorial-section-1


Xena: Building a Visual Spreadsheet

• Xena: https://xena.ucsc.edu/ 

• Create a visual spreadsheet

1. Load study sample data: 'GDC TCGA Lung 
Adenocarcinoma (LUAD)’

2. Variable: Genotype ‘EGFR’; Gene Expression, Copy 
Number, and Somatic Mutation data

3. Filter-out ‘null’ samples

4. Add new subgroups:
1. EFGR Aberrations ('(mis OR infra) OR C:>0.5’)
2. No EFGR Aberrations

5. Add ‘Gender.demographic’

6. Screenshot of completed data-table

7. Generate Kaplan-Meir survival plots

8. Generate box or violin comparison plots

9. Differential gene expression
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Xena Functional Genomics Explorer

• Xena: https://xena.ucsc.edu/

• Share your tables via Bookmarks (bookmarks 
are only guaranteed for 3 months): 
https://xenabrowser.net/?bookmark=1eb2cbad
fe4a36d0d1dd47d18d2c24cc 

• Differential gene expression and pathway 
enrichment analyses between EFGR +/-
aberrations datasets (access by clicking on 3-
dots Subgroup col. C):
http://analysis.xenahubs.net/3e53da9a208490
1f83dc09510c9e65b09086ac2e/ 

• Alternative to archive analysis results:
• Download data & plots
• Create your own local data-hub by download 

and installing a local copy of Xena

• See Xena’s Advanced Tutorials for more 
information
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https://xena.ucsc.edu/
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DepMap (Dependencies Map)

• DepMap: https://depmap.org/portal/home/#/ 

• Builds on the original Cancer Cell Line Encyclopedia (CCLE) project, which characterized 1000 cell line models. To date, more than 

2000 models have been collected: https://sites.broadinstitute.org/ccle/ 

• Data explorer: https://depmap.org/portal/interactive/ 
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DepMap Example: Genes EGFR

• DepMap Data explorer: 
https://depmap.org/portal/
interactive/ 

• X – Axis
• Select gene: EGFR
• Select dataset: Expression 

public 23Q4
• View options: Group by 

primary disease
• Add cell-line labels via 

click
• Downloadable data & 

figures
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DepMap Example: EGFR and GRB2 Co-dependency 

• EGFR overview: 
https://depmap.org/portal/gene/E
GFR?tab=overview 

• CRISPR Gene effects summary 
suggests that EGFR and GRB2 are 
co-dependent

• Score of “0” is equivalent to the 
gene not being essential

• Whereas a score of “-1” 
corresponds to the mean of all 
essential genes. 

• Several cell-lines have values < -1 
for both genes.
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DepMap Example: Genes EGFR and GRB1 Co-expression

• DepMap Data explorer: 
https://depmap.org/portal/interactive/ 

• EGFR & GRB1 co-expression:
• X – Axis
• Select gene: EGFR
• Select dataset: Expression public 23Q4
• Y – Axis
• Select gene: GRB1
• Select dataset: Expression public 23Q4
• View options: Group by primary disease
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DepMap: Celligner – Tumor + Cell Line Model Alignment

• DepMap: https://depmap.org/portal/celligner/ 
• Integrated CCLE and tumor expression datasets with calculated distance metrics for overall similarity

• Rank cell lines for selected tumors
• Find most similar tumors for a given cell line
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Catalogue Of Somatic Mutations in Cancer (COSMIC)

• Cosmic: https://cancer.sanger.ac.uk/cosmic (outdated?)

• Initial COSMIC Search results for gene CLEC2D: https://cancer.sanger.ac.uk/cosmic/search?q=CLEC2D 
• Gene view link: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=CLEC2D 
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Exercise 4: Cancer Databases

1. Recreate the example of EGFR mutations in lung adenocarcinoma using Xena: https://xena.ucsc.edu
1. Hint: this is Basic Tutorial Section 1: https://ucsc-xena.gitbook.io/project/tutorials/basic-tutorial-section-1 

2. For the genes EGFR and GRB1, recreate CRISPR co-dependency and co-expression plots using 
DepMap data explorer: https://depmap.org/portal/interactive/   
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Future Directions

• Further innovations in functional genomics assays (i.e. single-cell genomics, spatial genomics, CRISPR)

• Growth of clinical datasets with deep genomic analyses and precision medicine focus

• The future of AI/Machine Learning and Drug Target Discovery/Validation

• Entering a new era of AI enabled target discovery

• Large language models (LLMs) trained on diverse chemical, biological and clinical datasets

• Understanding feature selection and the underlying drivers of AI model predictions could be insightful

• Applications of AI to multi-omics analyses are exciting yet still evolving
• Bzdok et al. 2024. Neuron. Data science opportunities of large language models for neuroscience and biomedicine 

https://doi.org/10.1016/j.neuron.2024.01.016 
• Ren et al. 2024 Nature Biotechnology. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models 

https://doi.org/10.1038/s41587-024-02143-0 

• Cautionary notes on applying machine learning to Clinical Prediction (Chekroud et al. 2024. Science 383:164. 
https://www.science.org/doi/10.1126/science.adg8538 )
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Concluding Remarks

• Caveats
• Critically evaluate any results and cross check using multiple sources.

• Be mindful of the lag time between discovery in the literature and incorporation in public databases.

• Many databases are very human or mammalian centric:
• Pathogens have their own resources as does the microbiome.

• These web-tools are initial starting points. Leading towards greater more in-depth computational biology analyses such as 
phylogenomic analyses of orthologs or differentially expressed gene analyses. 

• Most of these databases have excellent free tutorials as well as helpful community blogs and discussion groups.

• For any computational hypothesis, it is essential to have experimental and/or clinical validation.

• Thank you!!

• Questions?

• I  am available for 1x1 meetings today and tomorrow (E-mail: jb4633@drexel.edu )
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